Bentuksederhana dari adalah.. Jawab: Jawaban yang tepat C. 14. Bentuk paling sederhana dari adalah Jawab: Jawaban yang tepat C. 15. Bentuk sederhana dari perkalian 4x(2x 2 - 3) (x + 4) adalah a. 4x 4 + 12x 3 - 12x 2 - 48x. b. 8x 4 - 32x 3 - 12x 2 - 48x. c. 8x 3 + 32x 3 - 12x. d.
HaiGoogle di sini ada pertanyaan itu Tentukan variabel koefisien konstanta dan jumlah suku dari bentuk aljabar berikut untuk menjawab pertanyaan tersebut dimulai dari perlu kita ketahui terlebih dahulu. Apa itu koefisien koefisien adalah faktor konstanta dari suatu variabel pada bentuk aljabar atau biasanya koefisien kita sebut sebagai
Bentuksederhana dari perkalian suku (X-5) (3x +5) . Question from @Daisam - Sekolah Menengah Pertama - Matematika
ContohSoal 1. Tentukan faktor bentuk aljabar dari bentuk aljabar berikut. a. x2 + 5x + 6. b. 2x2 - x - 10. Penyelesaian: a. Untuk mencari faktor bentuk aljabar dari x2 + 5x + 6 dapat dilakukan dengan mencari bilangan apa jika dikalikan hasilnya 6 dan jika dijumlahkan hasilnya 5.
answer- dari perkalian suku (2x-3)(x+5) adalah 2.hasil pemangkatan dari (2x+y)³adalah 3.bentuk sederhana dari (3y³x4ypangkat 4): 6y pangkat 5 4.hasil bagi 4x²+16x+15 oleh (2x+5) 5.bentuk sederhana dari 2x-6y/12 adalah
Hasilpenjumlahan maupun pengurangan pada bentuk aljabar dapat disederhanakan dengan cara mengelompokkan dan menyederhanakan suku-suku yang sejenis 2. 3. Contoh : 1. Sederhanakan bentuk aljabar 5x + 6x - 9x 2. Tentukan hasi penjumlahan dari 12x2 - 9x + 6 dan -7x2 + 8x - 14 3. Kurangkanlah 5x - 3 dan 9x - 6 Jawab : 1 5x + 6x - 9x
Bentukyang terakhir ini terdiri dari 4 suku, yaitu 5a 3, 3a 2, 9a dan 6. Bentuk aljabar kadangkala menggunakan "perkalian" antara variabel dengan lambang bilangan bulat. Sehingga untuk menyederhanakannya kita menggunakan sifat distributif perkalian terhadap penjumlahan atau terhadap pengurangan. Untuk lebih jelasnya perhatikan contoh
Kebalikandari sifat tersebut merupakan operasi perkalian bentuk akar. Jadi, operasi perkalian bentuk akar akan berlaku sifat: (√c + √d) Anda harus kembali mengingat cara mengalikan bentuk aljabar suku dua yakni: (a + b)(c + d) = ac + bc + ad + bd. Dengan cara yang sama maka perkalian bentuk akar dengan bentuk seperti (√a + √b)(√c
Untukperkalian aljabar, kalikan semua suku-suku yang terdapat dalam bentuk aljabar. Untuk pembagian aljabar, membagikan antar suku dengan faktor persekutuannya. Tulislah bentuk sederhana dari bilangan berikut ini 3×2 - 13x - 10 / 9×2 - 4 ? Pemfaktoran dari pembilang nya : 3×2 - 13x - 10 = 3×2 - 15x + 2x - 10
TranslatePDF. RENCANA PELAKSANAAN PEMBELAJARAN RPP Nama Sekolah : SMP Strada Slamet Riyadi Mata Pelajaran : Matematika Kelas/Semester : VII / I Materi Pokok : Bentuk Aljabar Alokasi Waktu : 15 x 40 menit A. Kompetensi Inti 1. Menghargai dan menghayati ajaran agama yang dianutnya 2. Menghargai dan menghayati perilaku, jujur, disiplin
Bentuksederhana dari perkalian suku (2×-3(×+5). Question from @Niaa71 - Sekolah Menengah Pertama - Matematika
Secaraumum, bentuk aljabar dituliskan sebagai berikut. kx ± c. Dengan: kx = suku; k = koefisien; x = variabel; dan. c = konstanta. Jika ada bentuk aljabar 3 x + 5, berarti 3 berperan sebagai koefisien, x sebagai variabel, dan 5 sebagai konstanta. Nah, untuk 3 x berperan sebagai suku berpangkat 1. Suku adalah gabungan antara koefisien dan variabel.
Perhatikanbentuk aljabar berikut! 2x2 + 3x - 6x2 - x. Bentuk aljabar ini memiliki 4 buah suku, yaitu 2x2, 3x, -6x2, dan -x. Suku 2x2 sejenis dengan suku -6x2, karena kedua suku itu memiliki variabel yang sama, yaitu x, dan memiliki pangkat yang sama, yaitu 2. Suku 3x sejenis dengan -x.
TranslatePDF. SILABUS PEMBELAJARAN TEMATIK Satuan Pendidikan : UPT SDN 06 SILAUT Kelas / Semester : V (Lima) / 1 Tema 1 : Bermain dengan benda-benda di sekitar Kompetensi Inti KI 1 : Menerima, menjalankan dan menghargai ajaran agama yang dianutnya. KI 2 : Menunjukkan perilaku jujur, disiplin, tanggungjawab, santun, peduli, dan percaya diri
Terdapat30 soal mengenai aljabar tentang sub pokok Sifat - sifat Operasi aljabar, Kaidah suku sejenis, Perkalian Suku - Suku aljabar, Pembagian dan bentuk pecahan suku suku aljabar, Pemfaktoran dan penyederhanaan Bentuk aljabar.
seZUYC. bentuk sederhana dr perkalian suku 2x-3 x+5 yakni2x-3x+5bentuk sederhana dr perkalian sukubentuk sederhana dr perkalian suku 2x-3x+5ialah…….bentuk sederhana dr perkalian suku 2x-3x+5 ialah.. bentuk sederhana dr perkalian suku 2x-3x+5 2x-3 x+52xkuadrat -3x+10x-152xkuadrat+7x-15 2x-3x+5bentuk sederhana dr perkalian suku 2x-3x+52×2+10x-3x-152×2+7x-15 bentuk sederhana dr perkalian suku 2x-3x+5ialah……. = 2x – 3 x + 5= [tex] 2x ^ 2 [/tex]+ 10x – 3x – 15= [tex] 2x ^ 2 [/tex]+ 7x – 15 bentuk sederhana dr perkalian suku 2x-3x+5 ialah.. [tex]2 x^ 2 +10x-3x-15=2 x^ 2 +7x-15[/tex] bentuk sederhana dr perkalian suku 2x-3x+5 2x-3x+52x²-3x+10x-152x²+7x-15seperti itu kan?
belajar matematika dasar SMA dari Operasi Penjumlahan, Pengurangan dan Perkalian Suku Banyak Polinomial. Sebagai contoh soal latihan untuk bahan The good student, bersama Calon Guru kita belajar matematika dasar SMA dari Operasi Penjumlahan, Pengurangan dan Perkalian Suku Banyak Polinomial. Sebagai contoh soal latihan untuk bahan diskusi, kita pilih dari soal pada Modul Operasi Penjumlahan, Pengurangan dan Perkalian Suku Banyak Polinomial Matematika SMA Kurikulum 2013. Operasi Aljabar Pada Suku Banyak Polinomial Operasi aljabar pada Suku Banyak Polinomial terdiri atas penjumlahan, pengurangan, perkalian dan pembagian. Untuk operasi aljabar pembagian polinomial terdapat beberapa teori baru sehingga pembagian akan kita diskusikan pada cataan tersendiri. Operasi penjumlahan dan pengurangan polinomial dilakukan dengan cara menjumlah/mengurang koefisien suku-suku yang mempunyai variabel dengan pangkat yang sama. Sederhananya seperti kita melakukan penjumlahan aatu pengurangan aljabar, dimana yang dapat dijumlahkan/dikurangkan adalah yang sama/sejenis. Sedangkan operasi perkalian polinomial dilakukan dengan cara mengalikan semua suku-suku secara bergantian. Prinsipnya juga sama seperti perkalian aljabar biasa, dan dengan memperhatikan sifat-sifat aljabar yang dapat diterapkan dalam perkalian suku banyak, misalnya sifat perkalian eksponen. Untuk tambahan penjelasan, kita lihat beberapa contoh soal berikut ini 1. Soal Latihan Operasi Aljabar Polinomial Diketahui fungsi polinomial $fx = 2x – 4$ dan $gx = 3x^{2} + 5x – 6$, Tentukanlah hasil dari $fx+gx$ Alternatif Pembahasan $\begin{align} & fx+gx \\ & =2x – 4 + 3x^{2} + 5x – 6 \\ & = 3x^{2} + 2x+5x -4-6 \\ & = 3x^{2} + 7x -10 \end{align}$ $fx-gx$ Alternatif Pembahasan $\begin{align} & fx-gx \\ & =2x – 4 - \left 3x^{2} + 5x – 6 \right \\ & =2x – 4 - 3x^{2} - 5x + 6 \\ & = -3x^{2} - 3x - 2 \end{align}$ $gx-fx$ Alternatif Pembahasan $\begin{align} & gx-fx \\ & =3x^{2} + 5x – 6 - \left 2x – 4 \right \\ & =3x^{2} + 5x – 6 - 2x +4 \\ & =3x^{2} + 3x - 2 \end{align}$ $f^{2}x+gx$ Alternatif Pembahasan $\begin{align} & f^{2}x+gx \\ & =\left 2x – 4 \right^{2} + 3x^{2} + 5x – 6 \\ & =4x^{2}-16x+16 + 3x^{2} + 5x – 6 \\ & =4x^{2}+3x^{2} -16x+5x+16-6 \\ & =7x^{2} - 11x +10 \end{align}$ $fx \times gx$ Alternatif Pembahasan $\begin{align} & fx \times gx \\ & = \left 2x – 4 \right \left 3x^{2} + 5x – 6 \right \\ & = 6x^{3} + 10x^{2} - 12x - 12x^{2} -20x + 24 \\ & = 6x^{3} - 2x^{2} - 32x + 24 \end{align}$ 2. Soal Latihan Operasi Aljabar Suku Banyak polinomial Tentukanlah bentuk sederhana dari $\left3x – 2 \right \left2x + 5 \right^{2}$ $\begin{align} A\ & 12x^{3} + 68x^{2} + 35x - 50 \\ B\ & 12x^{3} + 52x^{2} + 115x - 50 \\ C\ & 12x^{3} + 52x^{2} + 35x + 50 \\ D\ & 12x^{3} + 52x^{2} + 35x - 50 \\ E\ & 12x^{3} + 68x^{2} + 115x + 50 \end{align}$ Alternatif Pembahasan $\begin{align} & \left3x – 2 \right \left2x + 5 \right^{2} \\ & = \left3x – 2 \right \left4x^{2} + 20x + 25 \right \\ & =3x \cdot 4x^{2} + 3x \cdot 20x + 3x \cdot 25 - 2 \cdot 4x^{2} -2 \cdot 20x - 2 \cdot 25 \\ & =12x^{3} + 60x^{2} + 75x - 8x^{2} - 40x - 50 \\ & =12x^{3} + 52x^{2} + 35x - 50 \end{align}$ $ \therefore $ Pilihan yang sesuai adalah $D\ 12x^{3} + 52x^{2} + 35x - 50$ 3. Soal Latihan Operasi Aljabar Suku Banyak polinomial Tentukanlah bentuk sederhana dari $\left x-3 \right^{2} \left x+ 1 \right-\left x-3 \right \left x^{2}-3x+2 \right$ $\begin{align} A\ & x^{2} - 8x - 15 \\ B\ & x^{2} + 8x - 15 \\ C\ & x^{2} - 8x + 15 \\ D\ & x^{2} - 2x + 15 \\ E\ & x^{2} - 2x - 15 \end{align}$ Alternatif Pembahasan $\begin{align} & \left x-3 \right^{2} \left x+ 1 \right-\left x-3 \right \left x^{2}-3x+2 \right \\ & = \left x-3 \right \left[ \left x-3 \right\left x+ 1 \right- \left x^{2}-3x+2 \right \right] \\ & = \left x-3 \right \left[ x^{2}+x-3x-3 - x^{2}+3x-2 \right] \\ & = \left x-3 \right \left[ x-5 \right] \\ & = x^{2} - 5x - 3x + 15 \\ & = x^{2} - 8x + 15 \end{align}$ $ \therefore $ Pilihan yang sesuai adalah $C\ x^{2} - 8x + 15$ 4. Soal Latihan Operasi Aljabar Suku Banyak polinomial Jika $\dfrac{10x+4}{x^{2}-x-2} = \dfrac{a}{x-2} + \dfrac{b}{x+1}$ maka nilai $a-b$ adalah... $\begin{align} A\ & 2 \\ B\ & 3 \\ C\ & 4 \\ D\ & 5 \\ E\ & 6 \end{align}$ Alternatif Pembahasan $\begin{align} \dfrac{10x+4}{x^{2}-x-2} &= \dfrac{a}{x-2} + \dfrac{b}{x+1} \\ \dfrac{10x+4}{\left x+1 \right\left x-2 \right} &= \dfrac{a\left x+1 \right+b\left x-2 \right}{\left x+1 \right\left x-2 \right} \\ \dfrac{10x+4}{\left x+1 \right\left x-2 \right} &= \dfrac{ax+a +bx-2b}{\left x+1 \right\left x-2 \right} \\ \dfrac{10x+4}{\left x+1 \right\left x-2 \right} &= \dfrac{ax +bx+a-2b}{\left x+1 \right\left x-2 \right} \\ \dfrac{10x+4}{\left x+1 \right\left x-2 \right} &= \dfrac{\lefta+b \rightx+\left a-2b \right}{\left x+1 \right\left x-2 \right} \end{align}$ dari kesamaan dua suku banyak di atas dapat kita peroleh $\begin{align} a+b &= 10 \\ a-2b &= 4\ \ - \\ \hline 3b &= 6 \\ b &= 2 \longrightarrow a=8 \end{align}$ $ \therefore $ Pilihan yang sesuai adalah $E\ 6$ 5. Soal Latihan Operasi Aljabar Suku Banyak polinomial Uraian dari bentuk $\left3x – 4\right^{2} – \left4x + 2\right^{2}$ adalah... $\begin{align} A\ & -7x^{2} + 21x +3 \\ B\ & -7x^{2} -40x + 12 \\ C\ & 5x^{2} - 21x + 3 \\ D\ & 5x^{2} - 40x -3 \\ E\ & 21x^{2} +3x - 4 \end{align}$ Alternatif Pembahasan $\begin{align} & \left3x – 4\right^{2} – \left4x + 2\right^{2} \\ & = \left9x^{2} – 24x + 16 \right – \left16x^{2} + 16x +4 \right \\ & = 9x^{2} – 24x + 16 – 16x^{2} - 16x - 4 \\ & = -7x^{2} - 40x+12 \end{align}$ $ \therefore $ Pilihan yang sesuai adalah $B\ -7x^{2} - 40x+12$ 6. Soal Latihan Operasi Aljabar Suku Banyak polinomial Uraian dari $\left x^{2}-3 \right \left2x + 4\right \left2x - 5\right $ adalah... $\begin{align} A\ & 4x^{4} - 2x^{3} - 32x^{2} + 6x + 60 \\ B\ & 4x^{4} - 2x^{3} + 32x^{2} + 6x - 60 \\ C\ & 4x^{4} - 2x^{3} - 32x^{2} + 6x + 60 \\ D\ & 4x^{4} + 2x^{3} - 32x^{2} + 6x + 60 \\ E\ & 4x^{4} - 2x^{3} - 32x^{2} - 6x - 60 \end{align}$ Alternatif Pembahasan $\begin{align} & \left x^{2}-3 \right \left2x + 4\right \left2x - 5\right \\ & = \left x^{2}-3 \right \left4x^{2} -10x +8x -20 \right \\ & = \left x^{2}-3 \right \left4x^{2} -2x -20 \right \\ & = 4x^{4} - 2x^{3} - 20x^{2} - 12x^{2} + 6x + 60 \\ & = 4x^{4} - 2x^{3} - 32x^{2} + 6x + 60 \end{align}$ $ \therefore $ Pilihan yang sesuai adalah $C\ 4x^{4} - 2x^{3} - 32x^{2} + 6x + 60$ 7. Soal Latihan Operasi Aljabar Suku Banyak polinomial Uraian dari bentuk $\left 2x-3 \right^{2} \left3x + 2\right$ adalah... $\begin{align} A\ & 4x^{3} - 3x^{2} +28x -3 \\ B\ & 12x^{3} + 24x^{2} - 32x -16 \\ C\ & 12x^{3} - 28x^{2} + 3x + 18 \\ D\ & 24x^{3} - 8x^{2} + 9x + 10 \\ E\ & 24x^{3} + 24x^{2} - 18x +5 \end{align}$ Alternatif Pembahasan $\begin{align} & \left 2x-3 \right^{2} \left3x + 2\right \\ & = \left 4x^{2}-12x+9 \right \left3x + 2\right \\ & = 12x^{3}+8x^{2}-36x^{2}-24x+27x+18 \\ & = 12x^{3} -28x^{2}+3x+18 \end{align}$ $ \therefore $ Pilihan yang sesuai adalah $C\ 12x^{3} -28x^{2}+3x+18$ 8. Soal Latihan Operasi Aljabar Suku Banyak polinomial Uraian dari bentuk $\left x^{2}+x-2 \right \left 2x^{2}-x+3 \right$ adalah... $\begin{align} A\ & 2x^{2} + x^{3} - 2x^{4}+3x - 5 \\ B\ & 2x^{4} + x^{3} - 2x^{2}+5x - 6 \\ C\ & 2x^{4} - 3x^{3} + 4x^{2} -x-2 \\ D\ & x^{4} - 3x^{3} + x^{2} -5x+6 \\ E\ & 2x^{4} + 5x^{3} - x^{2} -3 \end{align}$ Alternatif Pembahasan $\begin{align} & \left x^{2}+x-2 \right \left 2x^{2}-x+3 \right \\ & = 2x^{4} -x^{3} +3x^{2}+2x^{3}-x^{2}+3x-4x^{2}+2x-6 \\ & = 2x^{4} -x^{3}+2x^{3} +3x^{2} -x^{2} -4x^{2}+3x+2x-6 \\ & = 2x^{4}+x^{3}-2x^{2} +5x-6 \end{align}$ $ \therefore $ Pilihan yang sesuai adalah $B\ 2x^{4} + x^{3} - 2x^{2}+5x - 6$ 9. Soal Latihan Operasi Aljabar Suku Banyak polinomial $\left x+2 \right^{2} \left 2x+3 \right - \left x+2 \right^{2} \left 7x-2 \right $ sama nilainya dengan... $\begin{align} A\ & -5x^{3} - 3x^{2} +2x-6 \\ B\ & -5x^{3} +x^{2} -6x +5 \\ C\ & -4x^{2} +16x + 16 \\ D\ & 5x^{2} + 8x + 8 \\ E\ & -5x^{3} -15x^{2} + 20 \end{align}$ Alternatif Pembahasan $\begin{align} & \left x+2 \right^{2} \left 2x+3 \right - \left x+2 \right^{2} \left 7x-2 \right \\ & = \left x+2 \right^{2} \left[ \left 2x+3 \right - \left 7x-2 \right \right] \\ & = \left x^{2}+4x+4 \right \left[ 2x+3 - 7x+2 \right] \\ & = \left x^{2}+4x+4 \right \left[ -5x+5 \right] \\ & = -5x^{3}+5x^{2}-20x^{2}+20x-20x+20 \\ & = -5x^{3}-15x^{2} +20 \end{align}$ $ \therefore $ Pilihan yang sesuai adalah $E\ -5x^{3} -15x^{2} + 20$ 10. Soal Latihan Operasi Aljabar Suku Banyak polinomial Dari kesamaan $\dfrac{a}{x-3} + \dfrac{b}{x+3}=\dfrac{5x+3}{x^{2}-9}$ nilai $a$ dan $b$ berturut-turut adalah... $\begin{align} A\ & 7\ \text{dan}\ 2 \\ B\ & 2\ \text{dan}\ -7 \\ C\ & -2\ \text{dan}\ 7 \\ D\ & -2\ \text{dan}\ -7 \\ E\ & 3\ \text{dan}\ 2 \end{align}$ Alternatif Pembahasan $\begin{align} \dfrac{a}{x-3} + \dfrac{b}{x+3} &= \dfrac{5x+3}{x^{2}-9} \\ \dfrac{a \leftx+3 \right+b\leftx-3 \right }{\leftx+3 \right\leftx-3 \right} &= \dfrac{5x+3}{\leftx-3 \right\leftx+3 \right} \\ \dfrac{ax+3a +bx-3b }{\leftx+3 \right\leftx-3 \right} &= \dfrac{5x+3}{\leftx-3 \right\leftx+3 \right} \\ \dfrac{ax+bx+3a -3b }{\leftx+3 \right\leftx-3 \right} &= \dfrac{5x+3}{\leftx-3 \right\leftx+3 \right} \\ \dfrac{ \lefta +b \rightx+ 3a -3b }{\leftx+3 \right\leftx-3 \right} &= \dfrac{5x+3}{\leftx-3 \right\leftx+3 \right} \end{align}$ dari kesamaan dua suku banyak di atas dapat kita peroleh $\begin{align} a+b &= 5 \\ 3a-3b &= 3 \\ \hline a+b &= 5 \\ a- b &= 1\ \ - \\ \hline 2b &= 4 \\ b &= 2 \longrightarrow a=3 \end{align}$ $ \therefore $ Pilihan yang sesuai adalah $E\ 3\ \text{dan}\ 2$ 11. Soal Latihan Operasi Aljabar Suku Banyak polinomial $\dfrac{-18x-1}{\left2x-3 \right\left 3x-1 \right}= \dfrac{p}{2x-3}+\dfrac{q}{3x-1}$ berlaku untuk setiap $x \in R$, $x \neq \frac{3}{2}$, $x \neq \frac{1}{3}$. Nilai $p$ dan $q$ adalah... $\begin{align} A\ & 3\ \text{dan}\ 8 \\ B\ & -3\ \text{dan}\ 8 \\ C\ & 3\ \text{dan}\ -8 \\ D\ & -3\ \text{dan}\ -8 \\ E\ & -8\ \text{dan}\ 3 \end{align}$ Alternatif Pembahasan $\begin{align} \dfrac{-18x-1}{\left2x-3 \right\left 3x-1 \right} &= \dfrac{p}{2x-3}+\dfrac{q}{3x-1} \\ \dfrac{-18x-1}{\left2x-3 \right\left 3x-1 \right} &= \dfrac{p\left 3x-1 \right+q\left2x-3 \right}{\left2x-3 \right\left 3x-1 \right} \\ \dfrac{-18x-1}{\left2x-3 \right\left 3x-1 \right} &= \dfrac{3px-p +2qx-3q}{\left2x-3 \right\left 3x-1 \right} \\ \dfrac{-18x-1}{\left2x-3 \right\left 3x-1 \right} &= \dfrac{3p+2qx-p+3q}{\left2x-3 \right\left 3x-1 \right} \\ \end{align}$ dari kesamaan dua suku banyak di atas dapat kita peroleh $\begin{align} 3p+2q &= -18 \\ p+3q &= 1 \\ \hline 3p+2q &= -18 \\ 3p+9q &= 3\ \, \, - \\ \hline -7q &= -21 \\ q &= 3 \longrightarrow p=-8 \end{align}$ $ \therefore $ Pilihan yang sesuai adalah $C\ 3\ \text{dan}\ -8$ Jika engkau tidak sanggup menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan ___pythagoras Beberapa pembahasan Soal Matematika Dasar Operasi Penjumlahan, Pengurangan dan Perkalian Suku Banyak Polinomial di atas adalah coretan kreatif siswa pada lembar jawaban penilaian harian matematika, lembar jawaban penilaian akhir semester matematika, presentasi hasil diskusi matematika atau pembahasan quiz matematika di kelas. Untuk segala sesuatu hal yang perlu kita diskusikan terkait Belajar Cara Operasi Penjumlahan, Pengurangan dan Perkalian Suku Banyak Polinomial Dilengkapi Soal Latihan dan Pembahasan silahkan disampaikan Ÿ™ CMIIWŸ˜Š. Jangan Lupa Untuk Berbagi Ÿ™ Share is Caring Ÿ€ dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLEŸ˜Š
Apa itu Perkalian Suku? Hello Readers! Sebelum kita membahas tentang cara mudah menguasai perkalian suku, mari kita bahas terlebih dahulu apa itu perkalian suku. Perkalian suku adalah operasi matematika yang menggabungkan dua atau lebih bilangan yang disebut faktor, untuk menghasilkan bilangan yang disebut produk. Bentuk Sederhana dari Perkalian Suku Salah satu bentuk sederhana dari perkalian suku adalah perkalian dua suku. Contohnya, jika kita ingin mengalikan 5 dengan 6, maka hasilnya adalah 30. Dalam hal ini, 5 dan 6 adalah faktor, sedangkan 30 adalah produk. Cara Mudah Mengalikan Dua Suku Untuk mengalikan dua suku, kita dapat menggunakan metode yang disebut metode penyebut. Caranya adalah dengan mengalikan kedua faktor yang berada pada bagian atas dan bagian bawah garis pemisah garis miring.Sebagai contoh, jika kita ingin mengalikan 2/3 dengan 4/5, maka caranya adalah sebagai berikut- Kita kalikan faktor yang berada pada bagian atas, yaitu 2 dan 4. Hasilnya adalah Kita kalikan faktor yang berada pada bagian bawah, yaitu 3 dan 5. Hasilnya adalah Kita letakkan hasil perkalian faktor atas di atas garis miring, dan hasil perkalian faktor bawah di bawah garis hasil perkalian 2/3 dengan 4/5 adalah 8/15. Perkalian Suku yang Lebih Rumit Selain perkalian dua suku, ada juga perkalian suku yang lebih rumit, seperti perkalian tiga suku, empat suku, dan seterusnya. Cara mengalikannya adalah dengan mengalikan faktor satu per satu, dan menggabungkan hasil perkalian contoh, jika kita ingin mengalikan 2 dengan 3 dengan 4, maka caranya adalah sebagai berikut- Kita kalikan faktor pertama, yaitu 2 dengan 3. Hasilnya adalah Kita kalikan hasil perkalian faktor pertama dengan faktor kedua, yaitu 6 dengan 4. Hasilnya adalah hasil perkalian 2 dengan 3 dengan 4 adalah 24. Kesimpulan Perkalian suku adalah operasi matematika yang penting dan sering digunakan dalam kehidupan sehari-hari. Untuk menguasai perkalian suku, kita perlu memahami konsep dasarnya terlebih dahulu, seperti perkalian dua suku dan metode penyebut. Dengan latihan yang cukup, kita akan semakin mahir dalam mengalikan suku-suku yang lebih kasih telah membaca artikel ini, sampai jumpa lagi di artikel menarik lainnya!
PembahasanGunakan hukum distributif yaitu a + b c + d = ab + a d + b c + b d Sehingga, 2 x − 3 x + 6 = = 2 x 2 + 12 x − 3 x − 18 2 x 2 + 9 x − 18 Dengan demikian, bentuk sederhana perkalian suku 2 x − 3 x + 6 adalah 2 x 2 + 9 x − 18 .Gunakan hukum distributif yaitu Sehingga, Dengan demikian, bentuk sederhana perkalian suku adalah .
bentuk sederhana dari perkalian suku